MULTIPLY YOUR INNOVATION
AND MAXIMIZE YOUR POTENTIAL

MULTIPLY YOUR KNOWLEDGE

Intel Developer FORUM
Non-conventional cooling solutions for low power components

Ioan Sauciucl (Intel)
Masataka Mochizuki (Fujikura)
Masami Ikeda (Furukawa)
Gaku Kamitani (Murata)
Agenda

• Drivers and background

• Piezo cooling capability

• Technology advancements:
 • Low voltage operation
 • Size reduction
 • New materials

• Cost data

• Call to action
Technology Drivers and Background

- Moore’s law
- ITRS Road Map
- Piezo introduction
- Piezo advantages
Background

• Conventional air cooling continues to work for Intel mainstream CPU products due to a combination of new architecture and 45 nm.

• Intel is committed to enable innovative cost effective energy efficient cooling solutions.

• Market diversification brings unique challenges.

• Cost and size reduction are technology drivers for some market segments.

• Intel has continued to develop new innovative demonstrations cases using the Piezo technology.
Moore’s Law

“Will it be possible to remove the heat generated by 10’s of thousands of components?”
G. Moore, *Cramming more components onto integrated circuits*, Electronics, Volume 38, Number 8, April 19, 1965

Moore’s Law is still working!
Drivers: ITRS 2005 Road Map - Mobility

Increased performance with low system cost is needed!

Data adapted from the 2005 International Technology Road Map for Semiconductors
A piezoelectric material changes its dimensions and can bend a substrate under an electric field.

Resonant vibration of small plates generate airflow!
Why Consider Piezo?

- **Low cost**
 - Made of inexpensive ceramic
 - No rotary parts (i.e. no bearings)
 - Simple circuitry

- **Low power & Low noise**
 - Power Consumption < x10 vs. conv.
 - Efficiency conversion > 99%
 - Operate at < 100 Hz

- **Performance & Reliability**
 - Can cool low power components
 - Accommodate low z-height
 - Preliminary reliability promising
Piezo – Area of Investigation

Thermal Design Power Distribution
Some Typical Component Power

Piezo Applications

Source: Intel

Piezo Technology - investigated for low power components!
Piezo Cooling Phenomena

Air Flow generation
Resonant blades movement generate air flow
Generates low pressure air
Piezo flow may be add to existing system flow

Direct thinning of the boundary layer
“Rake Piezo”- blades intertwined between fins
Blade disturbs the thermal boundary layer
Low cost single piezo patch used

Impingement flow
Piezo blowers & Synthetic Jets use diaphragms
Accommodate low z-height
Skin cooling
Localized cooling of small power components

* Photos used with permission from Furukawa Ltd., Fujikura Ltd., Murata Ltd.

All brands and trademarks are property of other owners
Piezo cooling capability

- Small form factor data
- Comparison vs. Conventional Fan
Piezo Small Form factor - Test set-up

(A) Six exposed Dies in enclosure 46 x 96 x 12 mm

(B) Heat Pipe Spreader

(C) Micro Heat Sink (MHS)

Components (x6)

Vents

Enclosure

Piezo Actuator

* Photos used with permission from Fujikura Ltd.
Cooling capability data point

Piezo can bring significant improvements in SFF!

* Photos used with permission from Fujikura Ltd.

*All brands and trademarks are property of other owners
Piezo Large Form factor - Test set-up

Conventional solution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater size</td>
<td>10 x 10 mm</td>
</tr>
<tr>
<td>Heat input</td>
<td>35 W</td>
</tr>
<tr>
<td>Piezo voltage</td>
<td>115 V</td>
</tr>
<tr>
<td>Piezo frequency</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Rotary fan voltage</td>
<td>8 V (DC)</td>
</tr>
</tbody>
</table>

Piezo fan solution

Photos used with permission from Furukawa Ltd.
Test Results- Piezo vs. Axial Fan

Comparison of power consumption,
10x10 mm heater, Q=35 W

Comparison of Fan noise,
10x10 mm heater, Q=35 W

Piezo - Low power consumption at reasonable performance!

Data used with permission from Furukawa Ltd.

All brands and trademarks are property of other owners
Thermal test setup in a chassis

Heat sink proto-types

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat sink dimension</td>
<td>36x66x35 mm</td>
</tr>
<tr>
<td>Fin plate thickness</td>
<td>0.5 mm</td>
</tr>
<tr>
<td>Heat sink material</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Heater size</td>
<td>10 x 10 mm</td>
</tr>
<tr>
<td>Heat input</td>
<td>35 W</td>
</tr>
<tr>
<td>Piezo voltage</td>
<td>115 V</td>
</tr>
<tr>
<td>Piezo frequency</td>
<td>60 Hz</td>
</tr>
</tbody>
</table>

* Photos used with permission from Furukawa Ltd.

All brands and trademarks are property of other owners
Optimum fin gap

Optimum fin gap 2.0 mm was confirmed in this test!

Thermal Performance, Q=35W, MCH-HS, In chassis, Vertical, Crimped, 4 Blades

Optimum performance

CPU Fan rpm
- 0 rpm
- 1200 rpm
- 2500 rpm

Optimum fin gap 2.0 mm was confirmed in this test!

Data used with permission from Furukawa Ltd.

All brands and trademarks are property of other owners
Thermal performance enhancement

Piezo can bring major improvements at no or low air flow!

Data used with permission from Furukawa Ltd.

All brands and trademarks are property of other owners.
Technology Advancements

- Low Operating Voltage
- Small size
- Drag reduction
- Cost reduction
Elongation = N * Strain * V

where:
N = the number of stacked piezoelectric layers,
Strain = the piezoelectric strain coefficient,
V = the applied voltage.

Multilayer Piezo Fan Concept/Test Data

<table>
<thead>
<tr>
<th>Piezo</th>
<th>Voltage $[V_{pp}]$</th>
<th>Frequency $[Hz]$</th>
<th>Blade stroke $[mm]$</th>
<th>Power $[mW]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Layer</td>
<td>65</td>
<td>46</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>10 layer</td>
<td>6.3</td>
<td>41.5</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>30 layer</td>
<td>12</td>
<td>43.5</td>
<td>26</td>
<td>82</td>
</tr>
<tr>
<td>50 layer</td>
<td>10</td>
<td>44.5</td>
<td>13.5</td>
<td>98</td>
</tr>
</tbody>
</table>

Photographs and data used with permission from Fujikura Ltd.

All brands and trademarks are property of other owners.
The multi layer piezo performance

Multilayer: Significant voltage reduction & better stroke!

Amplitude vs. Input Voltage at resonance frequency

*Data used with permission from Fujikura Ltd..

*All brands and trademarks are property of other owners.
"Rake Piezo" performance summary

[Bar chart showing "Rake Piezo"-thermal performance:
- Piezo Off: 2.5°C/W
- Piezo On (No Gap Optimization): >200% Improvement on 2.5°C/W
- Piezo On (Gap Optimization): 0.5°C/W

Significant performance improvements!

*All brands and trademarks are property of other owners.

Data used with permission from Fujikura Ltd.
Rake Piezo – Combined with existing Air Flow

Significant thermal improvements at low air flow!
Problem when using piezo fans between side walls

Air drag increases as side gap decreases.

"Data used with permission from Murata Ltd."

All brands and trademarks are property of other owners.
Problem when using piezo fans between side walls

Air drag increase by side walls makes amplitude smaller.

Blade length: 20mm

*Data used with permission from Murata Ltd.

*All brands and trademarks are property of other owners
Air drag reduction (1): Blade with slit

Air drag decreases with slit

Slit in blade reduces air drag.

Data used with permission from Murata Ltd.
Reduction of Air Drag Effect (2): weight on tip

Optimizing blade shape enables large amplitude. It eventually enables size reduction or voltage reduction.

Input Voltage [V] vs. Amplitude of Blade Tip [mm]

Side Gap: 0.5mm

Further Improvement

Data used with permission from Murata Ltd.

*All brands and trademarks are property of other owners.
Improvement of Heat Transfer: Blade with Slit

Temperature distribution without blade

Temperature distribution with moving slit blade

Vibration of the blade with a slit enhances heat removal > x2.

Q_{wall} = 410 [W/m^2]

Q_{wall} = 850 [W/m^2]

Data used with permission from Murata Ltd.

All brands and trademarks are property of other owners.
Cost of Piezo

<table>
<thead>
<tr>
<th>Size</th>
<th>60×45×0.5mm</th>
<th>6.5×4×0.15mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>< $ 0.8</td>
<td>< $ 0.3</td>
</tr>
</tbody>
</table>

*Data used with permission from Fujikura Ltd.

Cost is low!
Summary- Piezo Cooling

• Intel, along with its major suppliers such as Fujikura, Furukawa and Murata, is developing trouble-free non-conventional thermal solutions

• Significant cooling performance at low cost

• Novel “Rake Piezo” is effective in performance

• Novel designs can make it short length with large amplitude

*All brands and trademarks are property of other owners
Additional sources of information on this topic:

This Session presentation (PDF) is available from www.intel.com/idf. Some sessions will also provide Audio-enabled presentations after the event.
Call to Action!

• OEMs/ODMs – engage with Intel to evaluate piezo for cooling low power components or skin cooling.

• Piezo integrators and suppliers - form complex teams of materials, thermal and mechanical engineers to focus on the piezo challenges.

• Interact with Intel to develop and apply trouble free cooling solutions.

• You have been presented an alternative low cost cooling solution.

For more information please contact:
Ioan Sauciuc
E-mail: ioan.sauciuc@intel.com
Phone: (480)-552-0450
Thanks to all contributors!

• I would like to thank to the following significant contributors and reviewers:

All brands and trademarks are property of other owners
Risk Factors

This presentation contains forward-looking statements. All statements made that are not historical facts are subject to a number of risks and uncertainties, and actual results may differ materially. Please refer to our most recent Earnings Release and our most recent Form 10-Q or 10-K filing available on our website for more information on the risk factors that could cause actual results to differ.
Please fill out the Session Evaluation Form to win $500 Gift card!

How?

• Use your IDF Flash Drive
• Go to an IDF Internet Station
• Go to www.Intel.com/go/myidfeval

There will be daily drawings for Gift cards – The more evaluations you fill out the more chances to win!
Please note: One person cannot win more than 1 gift card per day!
Please see terms and conditions for drawing in Program Guide

Thank You for your input, we use it to improve future Intel Developer Forum events
Legal Disclaimer

- INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

- Intel may make changes to specifications and product descriptions at any time, without notice.
- All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
- Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.
- Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.
- Intel, Intel Inside, and the Intel logo are trademarks of Intel Corporation in the United States and other countries.
- *Other names and brands may be claimed as the property of others.
- Copyright © 2007 Intel Corporation.
Backup Slides
Thermal performance definition

\[\theta_{sr} = \frac{T_s - T_{room}}{P[W]} \]

- \(T_s\) = Sink Temperature [°C]
- \(T_{room}\) = Room temperature [°C]
- \(P\) = Chipset Power [W]